News from Accelerating Genetic Gains (AGG) project

AGG has just published its second, quarterly newsletter, where early success stories of the most ambitious maize and wheat project led by the International Maize and Wheat Research Center (CIMMYT) have been curated.

This issue focuses on capacity building-initiatives, technical updates from our wheat research, a look at the legacy of our maize research, and an update on our partnership and management activities. We also give a fond farewell to our Global Wheat Program director, Hans-Joachim Braun, who retired this month after nearly 40 years with CIMMYT, and enthusiastically welcome our new director, Alison Bentley.

We look forward to continued and growing progress achieving our goals for the world’s farmers and consumers of maize and wheat. If you have not yet subscribed to the quarterly newsletter, sign up here or click the button below.

Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) brings together partners in the global science community and in national agricultural research and extension systems to accelerate the development of higher-yielding varieties of maize and wheat — two of the world’s most important staple crops. 

Funded by the Bill & Melinda Gates Foundation, the UK Foreign, Commonwealth & Development Office (FCDO), the U.S. Agency for International Development (USAID) and the Foundation for Food and Agriculture Research (FFAR), AGG fuses innovative methods that improve breeding efficiency and precision to produce and deliver high-yielding varieties that are climate-resilient, pest- and disease-resistant, highly nutritious, and targeted to farmers’ specific needs. Visit the AGG Webpage.

“CIMMYT is at my heart”

Global Wheat Program director Hans Braun retires, leaving behind a legacy of strong leadership and wheat for millions.

This story by Madeline Dahm was originally posted on the CIMMYT website.

Background image for CIMMYT

After a 37-year career, Hans-Joachim Braun is retiring from the International Maize and Wheat Improvement Center (CIMMYT). As the director of the Global Wheat Program and the CGIAR Research Program on Wheat, Braun’s legacy will resonate throughout halls, greenhouses and fields of wheat research worldwide.

We caught up with him to capture some of his career milestones, best travel stories, and vision for the future of CIMMYT and global wheat production. And, of course, his retirement plans in the German countryside.

Beyh Akin (left) and Hans Braun in wheat fields in Izmir, Turkey, in 1989. (Photo: CIMMYT)
Beyh Akin (left) and Hans Braun in wheat fields in Izmir, Turkey, in 1989. (Photo: CIMMYT)

Major career milestones

Native to Germany, Braun moved to Mexico in 1981 to complete his PhD research at CIMMYT’s experimental station in Obrégon, in the state of Sonora. His research focused on identifying the optimum location to breed spring wheat for developing countries — and he found that Obrégon was in fact the ideal location.

His first posting with CIMMYT was in Turkey in 1985, as a breeder in the International Winter Wheat Improvement Program (IWWIP). This was the first CGIAR breeding program hosted by a CIMMYT co-operator, that later developed into the joint Turkey, CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA) winter wheat program. “In 1990, when the Commonwealth of Independent States was established, I saw this tremendous opportunity to work with Central Asia to develop better wheat varieties,” he said. “Today, IWWIP varieties are grown on nearly 3 million hectares.”

Although Braun was determined to become a wheat breeder, he never actually intended to spend his entire career with one institution. “Eventually I worked my entire career for CIMMYT. Not so usual anymore, but it was very rewarding. CIMMYT is at my heart; it is what I know.”

Hans Braun (center), Sanjaya Rajaram (third from right), Ravi Singh (first from right) and other colleagues stand for a photograph during a field day at CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico. (Photo: CIMMYT)
Hans Braun (center), Sanjaya Rajaram (third from right), Ravi Singh (first from right) and other colleagues stand for a photograph during a field day at CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico. (Photo: CIMMYT)

“Make the link to the unexpected”

One of Braun’s standout memories was a major discovery when he first came to Turkey.  When evaluating elite lines from outside the country — in particular lines from a similar environment in the Great Plains — his team noticed they were failing but nobody knew why.

Two of his colleagues had just returned from Australia, where research had recently identified micronutrient disorders in soil as a major constraint for cereal production. The team tried applying micro-nutrients to wheat plots, and it became crystal clear that zinc deficiency was the underlying cause. “Once aware that micro-nutrient disorders can cause severe growth problems, it was a minor step to identify boron toxicity as another issue. Looking back, it was so obvious. The cover picture of a FAO book on global soil analysis showed a rice field with zinc deficiency, and Turkey produces more boron than the rest of the world combined.”

“We tested the soil and found zinc deficiency was widespread, not just in the soils, but also in humans.” This led to a long-term cooperation with plant nutrition scientists from Cukurova University, now Sabanci University, in Istanbul.

But zinc deficiency did not explain all growth problems. Soil-borne diseases — cyst and lesion nematodes, and root and crown rot — were also widespread. In 1999, CIMMYT initiated a soil-borne disease screening program with Turkish colleagues that continues until today.  Over the coming decade, CIMMYT’s wheat program will make zinc a core trait and all lines will have at least 25% more zinc in the grain than currently grown varieties.

After 21 years in Turkey, Braun accepted the position as director of CIMMYT’s Global Wheat Program and moved back to Mexico.

Left to right: Zhonghu He, Sanjaya Rajaram, Ravi Singh and Hans Braun during a field trip in Anyang, South Korea, in 1990. (Photo: CIMMYT)
Left to right: Zhonghu He, Sanjaya Rajaram, Ravi Singh and Hans Braun during a field trip in Anyang, South Korea, in 1990. (Photo: CIMMYT)

Partnerships and friendships

Braun emphasized the importance of “mutual trust and connections,” especially with cooperators in the national agricultural research systems of partner countries. This strong global network contributed to another major milestone in CIMMYT wheat research: the rapid development and release of varieties with strong resistance to the virulent Ug99 race of wheat rust. This network, led by Cornell University, prevented a potential global wheat rust epidemic.

CIMMYT’s relationship with Mexico’s Ministry of Agriculture and the Obregón farmers union, the Patronato, is especially important to Braun.

In 1955, Patronato farmers made 200 hectares of land available, free if charge, to Norman Borlaug. The first farm community in the developing world to support research, it became CIMMYT’s principal wheat breeding experimental station: Norman Borlaug Experimental Station, or CENEB.  When Borlaug visited Obregón for the last time in 2009, the Patronato farmers had a big surprise.

“I was just getting out of the shower in my room in Obregón when I got a call from Jorge Artee Elias Calles, the president of the Patronato,” Braun recalls. “He said, ‘Hans, I’m really happy to inform you that Patronato decided to donate $1 million.’”

The donation, in honor of Borlaug’s lifetime of collaboration and global impact, was given for CIMMYT’s research on wheat diseases.

“This relationship and support from the Obregón farmers is really tremendous,” Braun says. “Obregón is a really special place to me.”

A worldwide perspective

Braun’s decades of international research and travel has yielded just as many stories and adventures as it has high-impact wheat varieties.

He remembers seeing areas marked with red tape as he surveyed wheat fields in Afghanistan in the 1990s, and the shock and fear he felt when he was informed that they were uncleared landmine areas. “I was never more scared than in that moment, and I followed the footsteps of the guy in front of me exactly,” Braun recalls.

On a different trip to Afghanistan, Braun met a farmer who had struggled with a yellow rust epidemic and was now growing CIMMYT lines that were resistant to it.

“The difference between his field and his neighbors’ was so incredible. When he learned I had developed the variety he was so thankful. He wanted to invite me to his home for dinner. Interestingly, he called it Mexican wheat, as all modern varieties are called there, though it came from the winter wheat program in Turkey.”

Seeing the impact of CIMMYT’s work on farmers was always a highlight for Braun.

Hans Braun, Director of CIMMYT’s Global Wheat Program of CIMMYT, is interviewed by Ethiopian journalist at an event in 2017. (Photo: CIMMYT)
Hans Braun, Director of CIMMYT’s Global Wheat Program of CIMMYT, is interviewed by Ethiopian journalist at an event in 2017. (Photo: CIMMYT)

CIMMYT’s future

Braun considers wheat research to be still in a “blessed environment” because a culture of openly-shared germplasm, knowledge and information among the global wheat community is still the norm. “I only can hope this is maintained, because it is the basis for future wheat improvement.”

His pride in his program and colleagues is clear.

“A successful, full-fledged wheat breeding program must have breeders, quantitative genetics, pathology, physiology, molecular science, wide crossing, quality, nutrition, bioinformatics, statistics, agronomy and input from economists and gender experts,” in addition to a broad target area, he remarked at an acceptance address for the Norman Borlaug Lifetime Achievement award.

“How many programs worldwide have this expertise and meet the target criteria? The Global Wheat Program is unique — no other wheat breeding program has a comparable impact. Today, around 60 million hectares are sown with CIMMYT-derived wheat varieties, increasing the annual income of farmers by around $3 billion dollars. Not bad for an annual investment in breeding of around $25 million dollars. And I don’t take credit for CIMMYT only, this is achieved through the excellent collaboration we have with national programs.”

A bright future for wheat, and for Braun

General view Inzlingen, Germany, with Basel in the background. (Photo: Hans Braun)
General view Inzlingen, Germany, with Basel in the background. (Photo: Hans Braun)

After retirement, Braun is looking forward to settling in rural Inzlingen, Germany, and being surrounded by the beautiful countryside and mountains, alongside his wife Johanna. They look forward to skiing, running, e-biking and other leisure activities.

“One other thing I will try — though most people will not believe me because I’m famous for not cooking — but I am really looking into experimenting with flour and baking,” he says.

Despite his relaxing retirement plans, Braun hopes to continue to support wheat research, whether it is through CIMMYT or through long friendships with national partners, raising awareness of population growth, the “problem of all problems” in his view.

“We have today 300 million more hungry people than in 1985. The road to zero hunger in 2030 is long and will need substantial efforts. In 1970, Organization for Economic Co-Operation and Development (OECD) countries agreed to spend 0.7% of GDP on official development assistance. Today only 6 countries meet this target and the average of all OECD countries has never been higher than 0.4%. Something needs to change to end extreme poverty — and that on top of COVID-19. The demand for wheat is increasing, and at the same time the area under wheat cultivation needs to be reduced, a double challenge. We need a strong maize and wheat program. The world needs a strong CIMMYT.”

Left to right: Bruno Gerard, Ram Dhulipala, David Bergvinson, Martin Kropff, Víctor Kommerell , Marianne Banziger, Dave Watson and Hans Braun at Borlaug Plaza during former Director General David Bergvinson’s visit to CIMMYT HQ.

To learn more about Hans Braun’s successor and incoming director of the Global Wheat Program and CGIAR Research Program on Wheat, check out this profile on Dr. Alison Bentley.

The new director of the CGIAR Research Program on Wheat brings many years of experience in wheat genetics, wheat genetic resources and wheat pre-breeding.

Press release: Landmark study generates genomic atlas for global wheat improvement

CIMMYT contributes to sequencing genomes of 15 wheat varieties around the world

Photo: Flickr/Saad Ahktar

Saskatoon, Saskatchewan (Canada), November 25, 2020.

In a landmark discovery for global wheat production, an international team led by the University of Saskatchewan (USask) and including scientists from the International Maize and Wheat Improvement Center (CIMMYT) has sequenced the genomes for 15 wheat varieties representing breeding programs around the world, enabling scientists and breeders to much more quickly identify influential genes for improved yield, pest resistance and other important crop traits.

The research results, just published in Nature, provide the most comprehensive atlas of wheat genome sequences ever reported. The 10+ Genome Project collaboration involved more than 95 scientists from universities and institutes in Canada, Switzerland, Germany, Japan, the U.K., Saudi Arabia, Mexico, Israel, Australia, and the U.S.

“It’s like finding the missing pieces for your favorite puzzle that you have been working on for decades,” said project leader Curtis Pozniak, wheat breeder and director of the USask Crop Development Centre (CDC). “By having many complete gene assemblies available, we can now help solve the huge puzzle that is the massive wheat pan-genome and usher in a new era for wheat discovery and breeding.”

“These discoveries pave the way to identifying genes responsible for traits wheat farmers in our partner countries are demanding, such as high yield, tolerance to heat and drought, and resistance to diseases and pests including wheat blast,” said Ravi Singh, head of global wheat improvement at CIMMYT and a study co-author.

One of the world’s most cultivated cereal crops, wheat plays an important role in global food security, providing about 20 per cent of human caloric intake globally. It’s estimated wheat production must increase by more than 50 per cent by 2050 to meet an increasing global demand.

The study findings build on the  first complete wheat genome reference map published by the  International Wheat Genome Sequencing Consortium in 2018,  increasing the number of wheat genome sequences almost 10-fold, and allowing scientists to identify genetic differences between wheat varieties.

The research team was also able to track the unique DNA signatures of genetic material incorporated into modern cultivars from wild wheat relatives over years of breeding.

“With partners at Kansas State University, we are very excited to leverage these genomic resources for genomics-assisted wheat breeding at CIMMYT” said Philomin Juliana, CIMMYT wheat breeder and study co-author.

 “This study has also provided the complete assembly of a wheat chromosomal segment called Vpm-1, which is derived from a wild wheat relative and has been consistently associated with high grain yield in the CIMMYT germplasm. This is a key milestone, given that this chromosomal segment is now present in more than 90% of the elite spring wheat lines distributed internationally by CIMMYT.”

The team also used the genome sequences to isolate an insect-resistant gene (called Sm1) that enables wheat plants to withstand the orange wheat blossom midge, a pest which causes millions of dollars in losses to wheat producers each year.  

“Understanding a causal gene like this is a game-changer for breeding because you can select for pest resistance more efficiently by using a simple DNA test than by manual field testing,” Pozniak said.

The 10+ Genome Project was sanctioned as a top priority by the Wheat Initiative, a coordinating body of international wheat researchers.

“This project is an excellent example of coordination across leading research groups around the globe.  Essentially every group working in wheat gene discovery, gene analysis and deployment of molecular breeding technologies will use the resource,” said Wheat Initiative Scientific Coordinator Peter Langridge.

Read the full press release from the University of Saskatchewan.

A list of international funding partners is available here:  http://www.10wheatgenomes.com/funders/                           

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit www.cimmyt.org.

About the University of Saskatchewan’s Crop Development Centre (CDC)

The Crop Development Centre in the USask College of Agriculture and Bioresources is known for research excellence in developing high-performing crop varieties and developing genomic resources and tools to support breeding programs.  Its program is unique in that basic research is fully integrated into applied breeding to improve existing crops, create new uses for traditional crops, and develop new crops. The CDC has developed more than 400 commercialized crop varieties.  https://agbio.usask.ca/research/centres-and-facilities/crop-development-centre.php#MoreAbouttheCDC

RELATED RESEARCH PUBLICATIONS:  

Multiple Wheat Genomes Reveal Global Variation in Modern Breeding

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT:

Marcia MacNeil, Communications Officer, CGIAR Research Program on Wheat, CIMMYT. m.macneil@cgiar.org

Victoria Dinh, Media Relations, Univeristy of Saskatchewan, Victoria.dinh@usask.ca, +01 306-966-5487

CIMMYT wheat research recognized for impact through highly-cited papers

Photo: Flickr/Tobias von der Haar

Three scientists working on wheat research with the International Maize and Wheat Improvement Center (CIMMYT) have been recognized as 2020 recipients of the Clarivate™ Highly Cited Researchers list.

The honor recognizes exceptional research performance demonstrated by the production of multiple papers that rank in the top 1 percent by citations for field and year, according to the Web of Science citation indexing service.

Called a “who’s who” of influential researchers, the list draws on data and analysis performed by bibliometric experts and data scientists at the Institute for Scientific Information™ at Clarivate.

The 2020 CIMMYT honorees include:

  • Julio Huerta: CIMMYT-seconded wheat breeder and rust geneticist with Mexico’s Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP)
  • Matthew Reynolds: CIMMYT Distinguished Scientist, wheat physiologist and member, Mexican Academy of Sciences
  • Ravi Singh: CIMMYT Distinguished Scientist and Head of Bread Wheat Improvement

“I congratulate my colleagues in the Global Wheat Program for this excellent recognition of their important work,” said incoming CIMMYT Global Wheat Program Director Alison Bentley.

Two Highly Cited Researcher certificates

The full 2020 Highly Cited Researchers list and executive summary can be found here.  

Wheat around the World: Celebrating International Whole Grain Day

Thursday, November 19 marks the International Whole Grain Day, and no one is more excited to celebrate it than your friends at the the International Wheat and Maize Improvement Center (CIMMYT)! Alongside our partners at CIMMYT, the CGIAR Research Programs on Wheat and Maize we have put together a tasting platter of our best work on whole grains—from explainers and research highlights to a crowd-sourced cookbook. Check out a few excerpts on wheat, and then head over to the CIMMYT 2020 Whole Grains Day Campaign for the full scoop!

The Cereal Serial, Episode 1

In the first installment of The Cereal Serial, CIMMYT’s maize and wheat quality experts Dr. Natalia Palacios and Dr. Itria Ibba explain what whole grains are and why they are an important part of a healthy diet. For a deeper dive into the subject, check out our whole grain explainer.

Wheat around the world

Take a virtual journey around the world to see the popular ways in which whole grains are eaten from Asia to the Americas. For the full photo story, check out the CIMMYT Photo Series.

For cookbooks, webinars, and groundbreaking research on nutrition and food security, visit the full CIMMYT 2020 International World Grain Day webpage, and share how YOU get your whole grain staples on social media with the #ChooseWholeGrains hashtag.

Read more here.

Constantly vigilant: Q&A with rust disease scientist Sridhar Bhavani

Sridhar Bhavani at a UG99 wheat stem rust screening event in Njoro, Kenya. Photo: University of Minnesota, David Hansen

International Maize and Wheat Improvement Center (CIMMYT) Senior Scientist and Head of Rust Pathology and Molecular Genetics Sridhar Bhavani has been fighting the spread of deadly wheat rusts for over 15 years.  He recently presented “A Decade of Stem Rust Phenotyping Network: Opportunities, Challenges and Way Forward” at the Borlaug Global Rust Initiative Technical Workshop in October.

We picked his brain about the growing danger of rust diseases, the newest weapons fighting them, and how researchers both within and outside the CGIAR system can best help wheat smallholder farmers in this seemingly never-ending battle.


Q: It seems like the rust races keep mutating, growing, and spreading and crop breeders and scientists are constantly in a position of reacting. Is this happening faster than in the past or does it just seem that way? Is this a factor of climate change, less diverse modern varieties, something else? Will we ever get ahead of the curve?

A: That’s right. Such events can in part be attributed to climate change. In the case of yellow rust races, we have seen the evolution of new aggressive races that are adapted to warmer temperatures in the last two decades, an unusual acclimatization for this disease. These races initiate early infection and with faster disease progression,  produce large amounts of spores and rapidly evolve to overcome resistant genes. The northern Himalayan region has been identified as a diversity hotspot for these aggressive races, resulting in significant yield losses and global migration of these races.

Interestingly, stem rust races of the Ug99 group have also adapted to cooler environments at altitudes over 3000 meters, which have been identified in the foothills of Mt. Kenya. Recent reports of stem rust variants of the “Digelu” race group, which has resurfaced in the United Kingdom and Europe, is a grave concern considering that the disease was practically under control for over 30 years.

Such diverse, fast-evolving, migrating populations pose a great challenge for breeding programs to continuously scout and deploy new resistant genes. For example, in Mexico, a new race with virulence has evolved every other year over the course of 12 years.

The lack of diversity of resistance genes (genetic uniformity) or combinations of multiple genes in varieties occupying vast production areas (mega varieties) compounds the issue of climate change. This can result in significant yield losses when resistant genes break down.

Different approaches have been used to enhance resistance durability, enabling breeders to stay ahead of the curve:

  • Pyramiding: Combining 2-3 resistance genes in a single variety makes it difficult for pathogens to overcome multiple genes at once.
  • Deploying complex race- non-specific pleotropic adult plant resistance (APR) genes: These genes, such as Sr2, Lr34, Lr46, Lr67 and Lr68, condition partial resistance against multiple diseases (leaf rust, stem rust, yellow rust, powdery mildew, etc.) and are present in CIMMYT germplasm. Combinations of three to four APR genes can enhance resistance to near-immune levels. Though cumbersome, it has been quite effective to keep rust under control over the last two decades.
  • Transgenic cassette approach: It is now possible to transform wheat lines with a cassette of up to eight multiple-cloned resistance genes. This approach stacks multiple resistance genes in the same cultivar and can enhance durability for longer periods. However, current regulatory framework in developed and developing nations doesn’t allow cultivation of transgenic wheat.
Stem rust. Photo: David Hansen, University of Minnesota

Q: What do you think are the areas where the global crop science/agricultural policy community can do better to help smallholder farmers?

A: The community should focus on developing long-term sustainable solutions:

  • Focus on genetic solutions for resource-poor smallholder farmers who lack access to fungicides
  • Eliminate older, susceptible varieties from wheat production areas.
  • Improve rapid dissemination of tools and technologies through on-farm trials and demonstrations, efficient seed systems, strong national extension networks and communities of practice.
  • Enhance national-level emergency preparedness for crop disease. A country’s response time and ability to contain the infected area and mitigate the damage through both immediate and long-term solutions makes a huge difference.
  • Promote policies that fast-track release, multiplication and testing time of improved resistant varieties, which historically takes six to eight years from the time the line is developed.  

Sridhar inspects rust-infected wheat crops. Photo: David Hansen, University of Minnesota

Q: Where do you see your field of research 20 years from now?  Where do you see the global rust situation 20 years from now? What are you concerned about or optimistic about?

A: I am optimistic that recent advances in sequencing-annotated wheat reference genomes and detailed analyses of gene content among sub-genomes will accelerate our understanding of bread wheat genetics. Wheat breeders can now use this information to identify agronomic traits, like grain quality, yield, abiotic stress tolerance and disease resistance.

Furthermore, the global rust monitoring and surveillance network has helped to understand pathogenic diversity in different geographies and possible migration patterns; and develop early forecasts and warning measures in risk-prone areas. These tools enable breeders to stay ahead of the race, and pre-emptive breeding helps them prepare for incursion of new races.

One of my bigger concerns is the “yield is king” mindset in developed countries. High-yielding but rust-susceptible varieties are being promoted with the view that the yield benefit will compensate for the cost of fungicides in disease years. Since this notion is also being promoted in developing countries, a major epidemic–coupled with fungicide supply shortages–can lead to disasters that will seriously impact smallholder farmers.


Q: Do you see the coming reform of CGIAR as having an impact on rust screening and resistance research?  Do you have a message for funders and/or those who are setting the One CGIAR research agenda?

A: Disease and pest resistance for crops, livestock, fisheries and forestry should be high on the agenda. We have witnessed significant impact of pest and pathogen resurgence in the last decade, beyond rust races. The variability and constant evolution of pests puts extreme pressure on breeders and researchers to be constantly vigilant against the emergence of new races, biotypes or strains.

Several threats have been effectively mitigated through global collaboration for surveillance and breeding. This facilitates screening and selection at hot spot sites and accelerates varietal release and adoption. Information-sharing partnerships to detect changes in virulence patterns would greatly reduce the need for fungicide and promote greater stability and sustainability of yield across agricultural environments.

A multidisciplinary approach involving pathologists, breeders, geneticists, physiologists, agronomists, simulation specialists and upstream bioinformaticians at different stages of research and development will be necessary to develop improved cultivars with stable and durable resistance to pests and diseases.

View Sridhar Bhavani’s full BGRI Workshop Presentation, “A Decade of Stem Rust Phenotyping Network: Opportunities, Challenges and Way Forward”


Press release: Rust-resistant bread wheat varieties widely adopted in Ethiopia, study shows

Researchers used DNA fingerprinting to track adoption in Ethiopia. Investments and innovative policy decisions are increasing farmer incomes and national wheat productivity. Varieties originating from CIMMYT have made a significant contribution.

Wheat field in Ethiopia. Photo: ILRI/ Apollo Habtamu.

Addis Ababa (Ethiopia), November 9, 2020.

A state-of-the-art study of plant DNA provides strong evidence that farmers in Ethiopia have widely adopted new, improved rust-resistant bread wheat varieties since 2014.

The results obtained from 4,000 plots, published in Nature Scientific Reports, found that nearly half (47%) of the area sampled was grown to varieties 10 years old or younger and the majority (61%) of these were released after 2005.

Four of the top varieties sown were recently-released rust-resistant varieties developed through the breeding programs of the Ethiopian Institute for Agricultural Research (EIAR) and the International Maize and Wheat Improvement Center (CIMMYT).

This is the first nationally representative, large-scale wheat DNA fingerprinting study undertaken in Ethiopia. The study was led by scientists at CIMMYT in partnership with the Ethiopian Institute of Agricultural Research (EIAR), the Ethiopian Central Statistical Agency (CSA) and Diversity Array Technologies (DArT).

“These results validate years of international investment and national policies that have worked to promote, distribute and fast-track the release of wheat varieties with the traits that farmers have asked for — particularly resistance to crop-destroying wheat rust disease,” said CIMMYT Principal Scientist Dave Hodson, the lead author of the study.

Ethiopia is the largest wheat producer in sub-Saharan Africa.  The Ethiopian government recently announced a goal to become self-sufficient in wheat, and increasing domestic wheat production is a national priority.

Widespread adoption of these improved varieties, demonstrated by DNA fingerprinting, has clearly had a positive impact on both economic returns and national wheat production gains.  Initial estimates show that farmers gained an additional 225,500 ton of extra production – valued at $50 million — by using varieties released after 2005.   

The results validate investments in wheat improvement made by international donor agencies, notably the Bill & Melinda Gates Foundation, the UK Foreign, Commonwealth and Development Office (FCDO, formerly DFID), the World Bank, the US Agency for International Development (USAID) and the Ethiopian government. Their success in speeding up variety release and seed multiplication in Ethiopia is considered a model for other countries.

 “This is good news for Ethiopian farmers, who are seeing better incomes from higher yielding, disease-resistant wheat, and for the Ethiopian government, which has put a high national priority on increasing domestic wheat production and reducing dependence on imports,” said EIAR Deputy Director General Chilot Yirga.

This study also confirmed the substantial contribution of CGIAR to national breeding efforts, with 90% of the area sampled containing wheat varieties released by Ethiopian wheat breeding programs derived from CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA) germplasm.

Varieties developed using germplasm received from CIMMYT covered 87% of the wheat area surveyed.

Adoption studies provide a fundamental measure of the success and effectiveness of agricultural research and investment. However, obtaining accurate information on the diffusion of crop varieties remains a challenging endeavor.

DNA fingerprinting enables researchers to identify the variety present in samples or plots, based on a comprehensive reference library of the genotypes of known varieties. In Ethiopia, over 94% of plots could be matched with known varieties. This provides data that is vastly more accurate than traditional farmer-recall surveys.

“When we compared DNA fingerprinting results with the results from a survey of farmers’ memory of the same plots, we saw that only 28% of farmers correctly named wheat varieties grown,” explained Hodson.

The resulting data helps national breeding programs adjust their seed production to meet demand, and national extension agents focus on areas that need better access to seed. It also helps scientists, policymakers, donors and organizations such as CIMMYT track their impact and prioritize funding, support, and the direction of future research.

“This research demonstrates that DNA fingerprinting can be applied at scale, and is likely to transform future crop varietal adoption studies. Additional DNA fingerprinting studies are now also well advanced for maize in Ethiopia” concluded CIMMYT Senior Scientist Kindie Tesfaye, co-author of the study and lead of the associated BMGF funded project.

The study authors greatly acknowledge the support of partnering institutions and financial support from the Mainstreaming the use and application of DNA Fingerprinting in Ethiopia for tracking crop varieties project funded by the Bill & Melinda Gates Foundation (Grant number OPP1118996).

—– ENDS —–

RELATED RESEARCH PUBLICATIONS:  

Ethiopia’s Transforming Wheat Landscape: Tracking Variety Use through DNA Fingerprinting

INTERVIEW OPPORTUNITIES:

Dave Hodson – Principal Scientist, International Maize and Wheat Improvement Center (CIMMYT)

Chilot Yirga – Deputy Director General, Ethiopia Institute of Agricultural Research (EIAR)

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Geneviève Renard, Head of Communications, CIMMYT. g.renard@cgiar.org, +52 (55) 5804 2004 ext. 2019.

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org, +52 (55) 5804 2004 ext. 1167.

Chilot Yirga – Deputy Director General, Ethiopia Institute of Agricultural Research (EIAR), cyirga.tizale@gmail.com

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit www.cimmyt.org.

ABOUT EIAR

As a national research institute, the Ethiopian Institute of Agricultural Research (EIAR) aspires to see improved livelihood of all Ethiopians engaged in agriculture, agro-pastoralism, and pastoralism through market-competitive agricultural technologies.

This research is supported by the Bill & Melinda Gates Foundation and CGIAR Fund Donors.


ICARDA scientists win the Crop Science Society of America 2020 Outstanding Paper Award

CSSA

We are pleased to share findings from our partners at the International Center for Agricultural Research in the Dry Areas (ICARDA). The following is excerpted from a post by ICARDA highlighting their recent and well-deserved award for outstanding research funded in-part by the CGIAR Research Program on Wheat.

ICARDA is thrilled to announce that the 2020 Outstanding Paper Award of Crop Science Journal by the Crop Science Society of America (CSSA) went to the  paper titled “Root System Architecture and Its Association with Yield under Different Water Regimes in Durum Wheat.” It explores the genetic variability for mature root traits among 25 durum genotypes by adapting low‐cost phenotyping methods and determining the effect of different root types on yield under moisture stress.

The CSSA is a bimonthly peer-reviewed scientific journal, recognized as one of the premier showcases of agricultural scientific research. After careful consideration by a subset of the Crop Science Editorial Board and other member-scientists, the article was selected based on how it has advanced knowledge in the profession, the effectiveness of communication, methodology, originality, and impact.

ICARDA scientists: lead author K. ElHassouni on the left and Filippo Bassi on the right

“It is exciting to have validated low-cost methods that will allow many people around the world to take a hard look at the root of the problem. Fighting against drought is an uphill battle, and we have known for a very long time that roots would be our greatest ally in this fight. Up until now, we did not have any easy way of doing that. I truly hope that this recognition will prompt more work on roots.”

– Senior author Filippo Bassi, ICARDA

Read the full story here.

This study was funded by the Australian Grains Research and Development Corporation (GRDC) and CGIAR Research Program on Wheat (WHEAT) led by the International Maize and Wheat Improvement Center (CIMMYT). 

Sowing seeds of the future

Alison Bentley, the incoming director of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT) and the CGIAR Research Program on Wheat, completed her formal education at the University of Sydney in Australia, with support from the Crawford Fund. In the blog below, originally posted on the website of the Crawford Fund, Alison Bentley looks back at her early career and the lessons she will take to her new role at CIMMYT.


Alison at the Crawford Fund Master Class in Turkey, 2003.

By Alison Bentley

In November 2020, I’ll be moving (at least in the virtual sense, given current travel restrictions) to the International Maize and Wheat Improvement Center (CIMMYT), based in Mexico, to lead the Global Wheat Program (GWP). CIMMYT’s GWP has an incredible track record of impact, delivering varieties and germplasm to support wheat production throughout the world.

My first experience of working with CIMMYT was in 2003 as an attendee at the first Crawford Master Class on Soil-Borne Pathogens of Wheat in Turkey, hosted by Dr. Julie Nicol (the then-CIMMYT soil-borne disease pathologist) and colleagues. As a new PhD student at The University of Sydney in Australia, this was an incredible scientific experience with the course encompassing field visits, lab practicals and lectures from leading scientists (including my PhD supervisor Professor Lester Burgess). In addition, it was my first visit to the Central West Asia & North Africa (CWANA) region and an opportunity to interact with CWANA wheat scientists.

Beyond the scientific learning, I remember the lunchtime football matches, social events and sense of excitement in our discussions about new ideas and future impacts. I was also fortunate to have financial support from the Crawford Fund NSW Committee to stay on in Turkey to conduct a survey of soil-borne diseases of wheat (supporting my PhD research). What a privilege it was to travel around Turkey with Dr. Berna Tunali from the University of Ondokus Mayýs, sampling wheat fields by day and eating grilled fish by the Coast of Marmara by night.

The collaboration allowed us to conduct a quantitative survey of the community of Fusarium species associated with wheat in northern production regions. It also provided me with a firm view of the context of my PhD research and of how working with partners greatly enhances the value (and enjoyment) of scientific research.

From these early months of my PhD spent in Turkey to its progression and completion (including international collaborations with Plant & Food New Zealand, Kansas State University, Cornell University and national collaborations with the South Australia Research and Development Institute and the Western Australia Department of Agriculture), I further learned the value of partnerships and collaboration. I also came to fully appreciate the importance of understanding context: what does the challenge look like in the field or system it is relevant to, how will change be implemented and by who? My supervisor Lester Burgess often cited “serendipity,” and it always struck me that what he was actually describing was not really pure good fortune, but the result of “making your own luck.”

I recall many days in northwest New South Wales driving long stretches on the trail of crown rot infections in farm crops and conversations with agronomists asking for tip-offs on recent sightings of disease. This process led to many important discoveries, notably for my PhD: the nature of sexual reproduction by the crown rot fungus and an understanding of spatial relationships of genetic variation in the field.

Alison Bentley (right) and Martin Jones (left) in the glasshouse at NIAB. Photo credit: Toby Smith/Gloknos.

The time spent talking to agronomists, visiting farms and conducting field surveys proved invaluable to my PhD. When I moved to the United Kingdom and joined the National Institute of Agricultural Botany (NIAB) in 2007 it was my foundational starting point. At NIAB, I joined the team embarking on a pioneering program of wheat pre-breeding to deliver systematically developed and validated resources for wheat improvement. When it started, this translational program aimed to bridge the gap between fundamental discoveries in model plant species and commercial breeding. It has led to the production of a wealth of genetic resources in commercially relevant genetic backgrounds for rapid uptake into breeding.

The program outputs to date include precisely defined germplasm (near-isogenic lines), user-friendly high-throughput genetic markers (for marker assisted selection), multi-founder populations and re-synthesised wheat incorporating untapped genetic diversity.

The resources developed at NIAB and by other institutes and universities have resulted in the UK having arguably one of the most prolific public sector germplasm creation programs worldwide outside the CGIAR. This has resulted in interest from both the research and breeding sector, leveraging significant public- and private-sector investment. Breeding programs in Europe, South and North America, Africa, Asia, and Australia have accessed material, indicative of global impact and success.

In moving to CIMMYT, I take forward the many lessons I have learned since my first Crawford Fund-supported visit to Turkey back in 2003. That visit was the seed of my future motivation to deliver science-led solutions to support global wheat production. My subsequent PhD research and time at NIAB have multiplied that seed into vast fields. CIMMYT, and CGIAR breeding deliver improved wheat germplasm into the hands of farmers. Seeds multiplied into fields multiplied into support for global farming communities.

International Wheat Yield Partnership launches European Winter Wheat Hub

New hub joins existing network of large translational pipelines operating on spring wheat at CIMMYT in Mexico

Winter wheat. Photo: Flickr/pepperberryfarms

This press release was originally posted on the website of the International Wheat Yield Partnership.

Building on a wealth of existing investment in UK wheat research and development, including the UK Research and Innovation BBSRC-funded Designing Future Wheat programme (DFW), the International Wheat Yield Partnership (IWYP) has formed a new European Winter Wheat Hub that will accelerate research discoveries from the UK and globally into commercial plant breeding.

A public-private partnership, the IWYP-European Winter Wheat Hub will combine novel traits discovered by collaborative international teams into a range of high performing European winter wheat genetic backgrounds for assessment and use in winter wheat breeding programs.

The global agriculture companies BASF, KWS, RAGT and Syngenta, in collaboration with the UK National Institute for Agricultural Botany (NIAB), will provide a translational pipeline supporting European winter wheat improvement. In partnership with IWYP, commercial breeders will select key genetic discoveries of potential value for the European wheat community from global IWYP research projects. NIAB will then use its
expertise in pre-breeding to produce genetic material for the validation and development of selected IWYP research outputs.

Joining the wider existing IWYP Hub Network of large translational pipelines operating on spring wheat at CIMMYT (the International Maize and Wheat Improvement Centre) in Mexico and the recently established NIFA-IWYP Winter Wheat Breeding Innovation Hub at Kansas State University, USA, the IWYP-European Winter Wheat Hub will ensure that cutting-edge discoveries are rapidly available to both the participating wheat breeders and to the global wheat breeding community.

“This is another excellent example of how public-private partnerships (such as the DFW, the Wheat Initiative and IWYP) can work well at both the international and national level,” said Dr. Chris Tapsell from KWS, who is leading the IWYP-European Winter Wheat Hub development.

“And this hub will help ensure that the hard work of the IWYP researchers around the world will deliver impacts that address the twin challenges of increasing wheat production for food security whilst protecting the environment.”

Jeff Gwyn, who leads the IWYP program said, “The addition of this new hub further strengthens the IWYP Hub Network and enables the development of our innovations to reach a wider industry base more rapidly. It is critical for IWYP to have its research outputs taken up and utilized for the public good. Public-private partnerships such as this further demonstrate that the IWYP initiative is filling a significant gap and creating value.”

Tina Barsby, CEO of NIAB commented, “NIAB has a strong track record in pre-breeding of wheat and particularly in working closely with commercial breeders to bring new variability to the market. We are really looking forward to helping to advance IWYP project traits into breeding programs.”

For further information about the IWYP-European Winter Wheat Hub please contact Chris Tapsell (KWS): chris.tapsell@kws.com.

For further information about IWYP please contact Jeff Gwyn (IWYP):
jeff.gwyn@ag.tamu.edu.


The IWYP program is based on an innovative model for public funding and international scientific collaboration to address the global grand challenge of food, nutritional and economic security for the future. The model employs public-private partnerships to scale and drive its research innovations for impact. Operations require active coordination of the international research and development teams whose discovery research focuses on complementary and overlapping sets of potentially high impact novel trait targets deemed likely to underpin yield increases, such as the regulation of photosynthesis, optimal plant architecture, plant biomass
distribution, and grain number and size. As the results emerge, it is possible to envisage how to combine them and therefore simultaneously remove multiple constraints affecting yields in farmers’ fields. https://iwyp.org/


NIAB is an independent plant biosciences organisation working to translate fundamental research into innovative solutions and products for the agricultural sector. The IWYP-European Winter Wheat Hub will leverage established expertise in wheat genetics and breeding at NIAB, including newly developed glasshouse and molecular laboratory facilities.
https://www.niab.com/


BASF, KWS, RAGT and Syngenta are innovation-led leaders in the wheat breeding industry, developing varieties that deliver consistent year-on-year genetics gain for the benefit of wheat growers throughout Europe and North America. All companies are active members of IWYP and launched this initiative to speed up and ensure the effective utilisation of deliverables from IWYP research projects, which are funded by partners across the globe including the BBSRC in the UK.
www.kws.com
www.ragt.fr
www.basf.com
www.syngenta.com

CIMMYT (International Maize and Wheat Improvement Center) is a non-profit international agricultural research and training organization focusing on two of the world’s most important cereal grains: maize and wheat, and related cropping systems and livelihoods. www.cimmyt.org